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Abstract. The current status of the determination of corrections to the hyperfine splitting of the ground
state in hydrogen is considered. Improved calculations are provided taking into account the most re-
cent value for the proton charge radius. Comparing experimental data with predictions for the hyper-
fine splitting, the Zemach radius of the proton is deduced to be 1.045(16) fm. Employing exponential
parametrizations for the electromagnetic form factors we determine the magnetic radius of the proton to
be 0.778(29) fm. Both values are compared with the corresponding ones derived from the data obtained
in electron-proton scattering experiments and the data extracted from a rescaled difference between the
hyperfine splittings in hydrogen and muonium.

PACS. 32.10.Fn Fine and hyperfine structure – 21.10.Ky Electromagnetic moments – 13.40.Gp Electro-
magnetic form factors

1 Introduction

High-precision measurements and calculations of energy
spectra of hydrogen-like atoms provide tests of quantum
electrodynamics (QED) with very high precision (see [1–4]
and references therein). In some cases, the current ac-
curacy of QED calculations exceeds those of the known
values of fundamental physical constants. For instance,
recent measurements and calculations of the g factor of
hydrogen-like carbon and oxygen have provided the ba-
sis for a new determination of the electron mass (see [5]
and references therein). Measurements of the Lamb shift
in hydrogen, combined with corresponding calculations,
have facilitated to determine the Rydberg constant and
to deduce an improved value for the proton charge ra-
dius [6–9].

The relative experimental accuracy of the ground-
state hyperfine splitting in hydrogen is better than
10−12 [10]. The error associated with the QED correc-
tions to the hyperfine splitting is estimated to contribute
on the level 10−9. The major theoretical uncertainty arises
from nuclear structure-dependent contributions. The most
important structure-dependent term is the proton-size
correction, which is determined exclusively by the spa-
tial distributions of the charge and the magnetic moment
of the proton. It contributes on the relative level 10−5.
Assuming that all other theoretical corrections are accu-
rately known, one can determine the proton-size contri-
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bution by comparing theoretical and experimental values
for the hyperfine splitting in hydrogen. The major goal
of the present paper is to determine the Zemach and the
magnetic radius of the proton by such a comparison.

In Section 2, we consider various theoretical contribu-
tions to the hyperfine splitting and derive the proton-size
correction comparing theory and experiment. In Section 3,
we refine the value of the proton-size correction by recal-
culating some of these contributions and determine the
magnetic radius of the proton, employing an exponential
parametrization for the electric and magnetic form factors.
The recalculation of the recoil correction has improved the
value of the Zemach radius compared to the previous re-
sult obtained in [11]. In Section 4, the results obtained
are compared with corresponding data derived from elas-
tic electron-proton scattering experiments [12–14] and the
data extracted from a rescaled difference between the hy-
perfine splittings in hydrogen and muonium [15].

The relativistic units � = c = 1 are used throughout
the paper.

2 Hyperfine splitting in hydrogen

The hyperfine splitting of the ground state in hydrogen
can be written in the form

∆Etheor = EF

(
1 + δDirac + δQED + δstructure

)
, (1)
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Table 1. Numerical values for various corrections to the hyperfine splitting in hydrogen together with the assigned errors. The
energies ∆Eexp and EF are given in units of MHz.

Value Error Ref.

∆Eexp 1 420.405 751 767 0.000 000 001 [10]

EF 1 418.840 08 0.000 02 [6]

∆Eexp/EF 1.001 103 49 0.000 000 01

δDirac 0.000 079 88 [17]

δQED 0.001 056 21 0.000 000 001 [18–23]

δps −0.000 040 11 0.000 000 61

δrecoil 0.000 005 97 0.000 000 06 [25,31], this work

δpol 0.000 001 4 0.000 000 6 [24]

δµvp 0.000 000 07 0.000 000 02 [25]

δhvp 0.000 000 01 [26,27]

δweak 0.000 000 06 [28,29]

where EF is the Fermi energy [16]

EF =
8
3
α(αZ)3

m2
em

2
p

(me + mp)3
µp

µN
, (2)

µp is the magnetic dipole moment of the proton, µN is the
nuclear magneton, me and mp are the electron and proton
mass, respectively. The relativistic correction δDirac can
easily be obtained from the Dirac equation [17]:

δDirac =
3
2
(αZ)2 +

17
8

(αZ)4 + ... (3)

Here and in what follows we keep the nuclear charge num-
ber Z to separate the relativistic and radiative corrections.
For recent achievements in calculations of the radiative
correction δQED we refer to references [18–23]. The uncer-
tainty of δQED is mainly determined by uncalculated terms
of order α3(αZ) and by uncertainties associated with some
of the calculated terms. The structure-dependent correc-
tion δstructure is usually expressed as the sum

δstructure = δpol + δµvp + δhvp + δweak + δrigid . (4)

The part associated with intrinsic proton dynamics (po-
larizability) δpol has been recently evaluated in [24] em-
ploying experimental and theoretical results for the struc-
ture functions of polarized protons. The correction due
to muonic vacuum-polarization δµvp has been obtained
in [25], while the hadronic vacuum-polarization contribu-
tion δhvp was evaluated in [26,27]. For the weak inter-
action term δweak we refer to references [28,29]. Values
for all these corrections together with corresponding un-
certainties are presented in Table 1. The Fermi energy
EF is evaluated employing the values of the fundamental
constants tabulated in [6]. The leading chiral logarithms
contributions to the structure-dependent correction have
been also investigated within an effective field theory [30].

Now let us turn to the term δrigid, which is deter-
mined by electric and magnetic form factors of the pro-
ton. This quantity can be decomposed into two parts:
δrigid = δps + δrecoil, where δps represents the proton-size
correction and δrecoil is associated with recoil effects. The

recoil part contains both terms arised from a pointlike
Dirac proton and additional recoil correction due to the
internal proton structure. Following reference [31] we do
not separate them. Calculations of the dominant contribu-
tion (relative order (αZ)me/mp) to the recoil correction
have a long history (see [31] and references therein). The
contribution of the order (αZ)2me/mp has been first de-
rived in [31], while the radiative-recoil correction of the
order α(αZ)me/mp has been obtained in [25]. To deter-
mine the magnetic radius of the proton from the hydrogen
hyperfine splitting we propose the following. At first we
calculate the structure-dependent part of the recoil cor-
rection in a rough approach, taking the proton magnetic
radius to be the same as the charge one. Then we find the
proton-size correction from a comparison of the experi-
mental and theoretical values of the hyperfine splitting.
Using the dipole parametrizations of the form factors we
extract a preliminary value for the proton magnetic ra-
dius. Then we recalculate the recoil-structure correction
with the obtained value of the proton magnetic radius
and take into account the radiative and binding contribu-
tions to the proton-size term. At last we again find the
proton-size correction and extract the magnetic radius.

At first iteration we have calculated the recoil-
structure correction (integrals VO, VV, κ2, No. 1, and
No. 2 of Ref. [31]) with the new proton charge radius
〈r2〉1/2

E = 0.8750(68) fm [6] and with the same value for
the magnetic radius of the proton. The total recoil correc-
tion turns out to be 5.84 ppm. Accordingly, the proton-size
correction δps is given by

δps = ∆Eexp/EF − 1 − δDirac

− δQED − δrecoil − δpol − δµvp − δhvp − δweak. (5)

This equation yields the value δps = −39.98(61) × 10−6.
The next section is devoted to the deduction of the mag-
netic radius of the proton from the proton-size correction
and to the next iteraction.
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3 Magnetic radius of the proton

The proton-size correction has been first evaluated in the
non-relativistic limit by Zemach [32]:

δZemach = −2αZ
memp

me + mp
Rp , (6)

where

Rp =
∫

d3r d3r′ ρE(r)ρM(r′)|r − r′|

= − 4
π

∫ ∞

0

dQ

Q2

[
µN

µp
GE(Q2)GM(Q2) − 1

]
(7)

defines the Zemach radius of the proton. Here ρE(r) and
ρM(r) denote the nuclear charge and magnetization dis-
tribution, respectively, where both densities are normal-
ized to unity. The quantities GE/M represent the elec-
tric and magnetic form factors, respectively. Since we deal
here only with the static limit (Q0 = 0), we define them
to be dependent only on the spatial momentum transfer
(squared), Q2 > 0. The charge and magnetic mean-square
radii are defined by the formula

〈r2〉E/M =
∫

d3r r2ρE/M(r) . (8)

In a first step we can approximate the proton-size correc-
tion by the Zemach formula. Then one can easily find the
Zemach radius Rp = 1.058 fm. The usual experimental fit
for the proton form factors is the dipole parametrization

GD(Q2) =
1

[1 + Q2R2
D]2

, (9)

which comes from the exponential model of the
charge/magnetization distribution. But recently, it was
obtained in Jefferson Laboratory (JLab) [33–36], that for
Q ≥ 1 GeV the behavior of the electric form factor differs
from the dipole parametrization. However, the Zemach
correction is not sensitive to the form factors behavior
for Q > 0.8 GeV. As it was shown in reference [15], the
contribution to the Zemach correction from the region
Q > 0.8 GeV is the same for different experimental models
of the proton electric and magnetic form factors. There-
fore, in what follows, we use the dipole parametrizations
for the form factors. The parameters RD, one for the elec-
tric and another for the magnetic form factor, are directly
connected with the corresponding values of the root-mean-
square radii. For the charge radius of the proton we take
the value 〈r2〉1/2

E = 0.8750(68) fm [6] obtained from the
latest comparison of the theoretical and experimental val-
ues of the Lamb shift in hydrogen. Fixing the charge ra-
dius, we fit the magnetic radius such as to reproduce the
Zemach radius. As the result we find a preliminary mag-
netic radius of the proton: 〈r2〉1/2

M = 0.800 fm. In order to
estimate the error associated with the model dependence
we consider also the model

GJLab(Q2) =
(

1 − 0.13
Q2

GeV2

)
GD(Q2) , (10)

which is known as JLab model [34]. The error appeared is
on the level of about 0.75%.

In a second step we account for corrections to the
Zemach formula

δps = δZemach + δradiative + δrelativistic , (11)

where δradiative is the radiative structure-dependent cor-
rection obtained in [25] and δrelativistic is the binding cor-
rection derived in [37]. The radiative correction has been
derived assuming the exponential model with the same
parameter RD for both charge and magnetization distri-
butions, i.e.

δradiative = −δZemach α

3π

[
4 log (meRD) +

4111
420

]
. (12)

The accuracy of this approximation is sufficient for our
purpose. Calculating δradiative for different RD, we obtain
δradiative = 0.0153(2)δZemach. The binding correction has
been expressed in terms of electric and magnetic moments
of the proton:

δrelativistic = δZemach(αZ)2
[
7
4
− γ − log (2αZ)

]

− 2(αZ)3me〈r〉E
(
〈r log (mer)〉E

〈r〉E − 839
750

)

− (αZ)3meR0

5

(
3〈r4〉M
2R4

0

−19〈r6〉M
42R6

0

+
19〈r8〉M
360R8

0

− 2
825

〈r10〉M
R10

0

)

− (αZ)3meR0

(
〈r2〉M
R2

0

− 1
10

〈r4〉M
R4

0

)(

log (meR0) +
1
30

)

,

(13)

where γ is Euler’s constant and 〈rn〉E/M =∫
d3r rnρE/M(r). In part, this equation has been

derived for the homogeneously charged sphere model for
the proton charge distribution (with R0 =

√
5/3〈r2〉1/2

E ).
Nevertheless, the error induced by using this formula
in comparison with other models for the charge distri-
bution does not exceed 5%. Employing the exponential
model for the charge and magnetization distributions
with electric and magnetic radii, 〈r2〉1/2

E = 0.875 fm
and 〈r2〉1/2

M = 0.800 fm, respectively, we obtain
δrelativistic = 0.0002δZemach + 1.4 × 10−8. Thus the
proton-size correction takes the form

δps = 1.0154(2)δZemach + 1.4 × 10−8. (14)

In addition, we need to correct the dominant term of the
recoil contribution with the magnetic radius 〈r2〉1/2

M =
0.800 fm. As a result, the recoil correction turns out to
be 5.94(6) ppm.

Deducing again the proton-size correction by means of
equation (5), we find the Zemach radius of the proton:

Rp = 1.045(16) fm. (15)
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This value differs from the one obtained in [11], Rp =
1.037(16) fm, mainly due to the recalculated recoil cor-
rections with the new more precise charge and magnetic
moment distributions.

4 Discussion

The value for the Zemach radius obtained above enables us
to determine an improved magnetic radius of the proton:

〈r2〉1/2
M = 0.778(29) fm. (16)

The corresponding uncertainty is mainly due to errors as-
sociated with the polarizability effect as well as the un-
certainty of the charge radius of the proton. In Table 1
we present the final values for the contributions to the hy-
perfine splitting in hydrogen. The value for δps has been
obtained by means of the experimental energy splitting,
according to equation (5).

Another way to determine the proton magnetic ra-
dius is based on experimental data from elastic electron-
proton scattering. Accordingly, Friar and Sick have re-
cently determined the Zemach radius of the proton to
be Rp = 1.086(12) fm [13] and the proton charge ra-
dius 〈r2〉1/2

E = 0.895(18) fm [12]. Based on these val-
ues for Rp and 〈r2〉1/2

E and employing an exponential
parametrization for both electric and magnetic form fac-
tors, we find the value of the proton magnetic radius
〈r2〉1/2

M = 0.824(27) fm. This value is in a good agreement
with the recent experimental value of Sick — 0.855(35) fm
presented in [14], and also the result of Hammer and
Meißner 0.857 fm [14] is not far away.

Recently Brodsky et al. [15] proposed another method
to extract the Zemach radius. They considered a rescaled
difference between the hyperfine splittings in hydrogen
and muonium

∆Ep
exp/Ep

F

∆Eµ
exp/Eµ

F

= 1 + δhfs , (17)

where p and µ indicate quantities which refer
to the proton and muon, respectively, ∆Eµ

exp =
4 463.302 765(53) MHz [38], and Eµ

F is the Fermi energy
for muonium. Employing recent values of the fundamental
constants [6] they have obtained δhfs = 145.51 ppm [15].
The ground state hyperfine splitting in muonium can be
written as

∆Eµ
theor = Eµ

F(1 + δDirac + δQED

+ δrecoil
µ + δhvp

µ + δweak
µ ) . (18)

The corrections δDirac and δQED are the same as in the
case of hydrogen, δhvp

µ and δweak
µ are the hadronic vacuum-

polarization and the weak interaction contributions, re-
spectively, and δrecoil

µ is the recoil term, which consists of
relativistic and radiative parts. From this formula together

with equations (1) and (17) one can immediately derive
the proton structure correction

δstructure
p = δhfs + δrecoil

µ + δhvp
µ + δweak

µ

+ δhfs(δDirac + δQED + δrecoil
µ + δhvp

µ + δweak
µ ) . (19)

If, following to reference [15], we take into account only
the relativistic part of the recoil correction [20,31,39–41]
and neglect the contributions δhvp

µ and δweak
µ , we obtain

δstructure
p = −31.8 ppm. This yields the Zemach radius

Rp = 1.019(16) fm [15] that differs significantly from
our result, Rp = 1.045(16) fm. We have found, how-
ever, that the difference disappears if one includes the
omitted terms. This is mainly due to the radiative-recoil
correction evaluated in [20,39–44]. With this term in-
cluded, the total recoil correction is determined as δrecoil

µ =
−178.33 ppm. The hadronic vacuum-polarization contri-
bution obtained in [26,27] is δhvp

µ = 0.05 ppm, while the
value of the correction due to Z0-boson exchange yields
δweak
µ = −0.01 ppm [28,29]. Substituting these values

into expression (19), we find δstructure
p = −32.64 ppm.

Utilizing the values presented in Table 1, we obtain for
the proton-size correction δps = −40.15 ppm. Then the
Zemach radius can be easily determined with the result
Rp = 1.047(16) fm, which is very close to the value ob-
tained in this work, Rp = 1.045(16) fm.

As one can see, only a disagreement with the value
for the Zemach radius and, therefore, with this for the
magnetic radius, as is obtained from the electron-proton
scattering experiments remains. At present we have no
explanation for this deviation. One may hope, that a new
determination of the proton charge radius via the Lamb
shift experiment with muonic hydrogen, which is now in
progress at PSI (Paul Scherrer Institute) [45], will eluci-
date the situation. From the theoretical point of view, an
independent calculation of the proton polarizability effect
would be also desirable.
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